
Lecture 9

The Particle and Momentum Balance Equations

The scalar flux and the current are generally the two physical quantities of greatest

interest in transport calculations. In this section we show that rigorous equations for these

two quantities can be derived. However, these equations also contain a third transport

unknown, thus additional information is required to close them. We briefly discuss a

closure that leads to the diffusion equation, and include the effect of anisotropic scattering

and anisotropic inhomogeneous sources. We begin our derivation with the time-dependent

transport equation in Cartesian geometry:
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v

∂ψ

∂t
+

−→
Ω · −→∇ψ + σtψ =

∫
4π

σs(
−→
Ω

′
· −→Ω )ψ(

−→
Ω

′
) dΩ′ +Q(

−→
Ω ) . (1)

Next we expand the angular flux in the scattering source and the inhomogeneous source in

spherical harmonics:
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Ω · −→∇ψ + σtψ =

∫
4π

σs(
−→
Ω

′
· −→Ω )

∞∑
k=0
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2k + 1

4π
ψm

k Y m
k (

−→
Ω

′
) dΩ′ +

∞∑
k=0

k∑
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2k + 1

4π
Qm

k Y m
k (

−→
Ω ) . (2)

where the definition of the spherical harmonics is given in Appendix C, and

ψm
k =

∫
4π

ψ(
−→
Ω )Y m

k (
−→
Ω ) dΩ , (3)
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Qm
k =

∫
4π

Q(
−→
Ω )Y m

k (
−→
Ω ) dΩ . (4)

It is shown in Appendix C that

∫
4π

σs(
−→
Ω

′
· −→Ω )Y m

k (
−→
Ω

′
) dΩ′ = σkY

m
k (

−→
Ω ) , (5)

where σk is the k’th Legendre expansion coefficient for the scattering cross-section:

σk = 2π

∫ +1

−1

σs(µ0)Pk(µ0) dµ0 , (6)

and Pk is the Legendre polynomial of degree k, or equivalently, the spherical harmonic, Y 0
k .

Substituting from Eq. (5) into Eq. (2), we get
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v

∂ψ

∂t
+

−→
Ω · −→∇ψ + σtψ =

∞∑
k=0

k∑
m=−k

2k + 1

4π
[σkψ

m
k +Qm

k ]Y
m
k (

−→
Ω ) . (7)

Recognizing that Y 0
0 = 1 and taking the the orthogonality of the spherical harmonics into

account, we integrate Eq. (7) over all directions and obtain

1

v

∂φ

∂t
+

−→
∇·−→J + σtφ = σ0φ

0
0 +Q0

0 . (8)

Since P0 = 1, it follows from Eq. (6) that

σ0 = σs . (9)

Since Y 0
0 = 1, it follows from Eqs. (3) and (4), respectively, that

φ0
0 = φ . (10)
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and

Q0
0 =

∫
4π

QdΩ . (11)

Thus, as required, Eq. (8) reduces to the balance equation:

1

v

∂φ

∂t
+

−→
∇·−→J + σaφ = Q0 , (12)

where Q0 simply denotes Q(
−→
Ω ) integrated over all angles.

Multiplying Eq. (7) by
−→
Ω and integrating over all angles, we get

1

v

∂
−→
J

∂t
+

−→
∇·−→P + σt

−→
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∫
4π

−→
Ω

{ ∞∑
k=0

k∑
m=−k

2k + 1

4π
[σkψ

m
k +Qm

k ]Y
m
k (

−→
Ω )

}
dΩ , (13)

where
−→
P is the radiation pressure tensor. Specifically,

Pi,j =

∫
4π

ΩiΩj ψ(
−→
Ω ) dΩ , (14)

where i and j are component indices, e.g., in Cartesian coordinates,

Ωx ≡ x-component of
−→
Ω ,

Ωy ≡ y-component of
−→
Ω ,

Ωz ≡ z-component of
−→
Ω , (15)

Note from Eq. (14) that the radiation pressure tensor is symmetric. Furthermore, the
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divergence of a tensor is a vector:

−→
∇·−→P =




∂
∂x

Px,x +
∂
∂y

Px,y +
∂
∂z

Px,z

∂
∂x

Py,x +
∂
∂y

Py,y +
∂
∂z

Py,z

∂
∂x

Pz,x +
∂
∂y

Pz,y +
∂
∂z

Pz,z




. (16)

To evaluate the right side of Eq. (13), we must first recognize that

Ωx = Y 1
1 ,

Ωy = Y −1
1 ,

Ωz = Y 0
1 . (17)

Substituting from Eq. (17) into Eq. (13), and taking the orthogonality of the spherical

harmonics into account, we obtain

1

v

∂

∂t

−→
J +

−→
∇·−→P + σt

−→
J = σ1

−→
J +

−→
Q 1 , (18)

where

−→
Q 1 =

(
Q1

1, Q
−1
1 , Q0

1

)
. (19)

We refer to Eq. (18) as the momentum balance equation because it expresses the conserva-

tion of particle momentum if multiplied by the magnitude of the momentum per particle.

The particle and momentum balance equations constitute a system of equations for

the scalar flux and the current, but the system is not closed due to the presence of the
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radiation pressure tensor. There are many closures for these equations that form the basis

of approximate transport theories as well as exact closures that form the basis of numerical

transport solution techniques. We will discuss some of these in detail at a later point. For

the moment, we simply note that almost all closures are defined in terms of the Eddington

tensor. This tensor is defined as follows:

Ei,j = Pi,j/φ =

[∫
4π

ΩiΩj ψ(
−→
Ω ) dΩ

] /[∫
4π

ψ(
−→
Ω ) dΩ

]
. (20)

Substituting from Eq. (20) into Eq. (18), we get the Eddingtron form of the momentum

equation:

1

v

∂

∂t

−→
J +

−→
∇·

[−→
E φ

]
+ σt

−→
J = σ1

−→
J +

−→
Q 1 , (21)

Defining the Eddington tensor closes the system of equations for the scalar flux and current.

Note that the elements of the Eddington tensor relate purely to the angular shape of

the angular flux. Knowledege of its magnitude is not required. Thus closing the system

requires information on the angular flux shape. This information can either be obtained

via certain physical assumptions or via a computational procedure. The latter approach

will be discussed at a later point.

If we assume that the angular flux is isotropic linear in angle, i.e.,

ψ =
1

4π
φ+

3

4π

−→
J · −→Ω , (22)
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the Eddington tensor reduces to a scalar, and Eq. (21) becomes

1

v

∂

∂t

−→
J +

1

3

−→
∇φ+ σtr

−→
J =

−→
Q 1 , (23)

where

σtr = σt − σ1 . (24)

The quantity σtr is called the transport-corrected total cross-section. This is equal to the

sum of the absorption cross-section and the transport-corrected scattering cross-section,

σsr ≡ σs − σ1. Equations (12) and (23) form a closed system for the scalar flux and cur-

rent, and as one would expect, yield the diffusion approximation in steady-state. Note

that with this simple closure, the effect of anisotropic simply takes the form of a mod-

ifed scattering cross section. In particular, the scattering cross-section is replaced by the

transport-corrected scattering cross-section. It is insightful to note that

σsr = σs(1− µ̄0) , (25)

where µ̄0 is the average scattering cosine, i.e.

µ̄0 =
2π

σs

∫ +1

−1

σs(µ0)µ0 dµ0 . (26)

Thus, if µ̄0 > 0, the scattering is forward-peaked, and the effective scattering cross section is

smaller than the true scattering cross-section. Conversely, if µ̄0 < 0, the effective scattering

cross section is larger than the true scattering cross section. This clearly makes physical
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sense. Also note that µ̄0 = 1, implies that µ0 = 1 for all scattering events. For this case,

Eq. (25) yields an effective scattering cross section of zero. This is correct even for exact

transport theory, because the particle direction is not changed with a scattering cosine of

unity. Thus, in the monoenergetic case, such an event is equivalent to no scattering at all.

In the general case, the effect of anisotropic scattering cannot be reduced to an effective

cross section because the Eddington tensor will also be affected.
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